Generating functions, Fibonacci numbers and rational knots
نویسندگان
چکیده
منابع مشابه
Hypergeometric Functions and Fibonacci Numbers
Hypergeometric functions are an important tool in many branches of pure and applied mathematics, and they encompass most special functions, including the Chebyshev polynomials. There are also well-known connections between Chebyshev polynomials and sequences of numbers and polynomials related to Fibonacci numbers. However, to my knowledge and with one small exception, direct connections between...
متن کاملOn a Class of Knots with Fibonacci Invariant Numbers
This paper describes how a subclass of the rational knots* may be constructed sequentially., the knots in the sequence having 19 29 ..., i s ... crossings. For these knots, the values of a certain knot invariant are Fibonacci numbers, the i knot in the sequence having invariant number Fi . The knot invariant has a wide number of interpretations and properties, and some of these will be outlined...
متن کاملEnergy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کاملCounting with rational generating functions
We examine two different ways of encoding a counting function, as a rational generating function and explicitly as a function (defined piecewise using the greatest integer function). We prove that, if the degree and number of input variables of the (quasi-polynomial) function are fixed, there is a polynomial time algorithm which converts between the two representations. Examples of such countin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2007
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2006.11.031